
Intercept and modify video frames

Description

Frame interception works only for stream publishers and gets called before frame is

distributed to encoding/rescaling groups. It can be used with WebRTC and WebSocket

player clients.

To intercept frames, interface IDecodedFrameInterceptor from package

com.flashphoner.sdk.media should be implemented. The interface declares one method -

frameDecoded()- allowing to process intercepted frame depending on the stream name:
void frameDecoded(String streamName, YUVFrame frame);

Recommendations

Because of the nature of real-time video stream, frameDecoded() method is synchronous,

i.e. frame 2 cannot be decoded while you are working on frame 1. Therefore, try to avoid

long computations in frameDecoded() to minimize impact on stream delay and smoothness.

Pixel manipulation
All pixel data is in DirectByteBuffer allocated in native C. It is not recommended to clone

backing buffer or YUVFrame because that will lead to huge memory leak and server crash as

a result. Pixel manipulation should be performed using buffer.get() and buffer.put()

methods, or helper methods, such as readPixel() and writePixel().

Configuration

1. Create a Java class for frames interception

a. Create class implementing com.flashphoner.sdk.media.IDecodedFrameInterceptor

(see the example below)

b. Copy it to /usr/local/FlashphonerWebCallServer/lib

c. Run the following commands
- javac -classpath .:tbs-flashphoner.jar:slf4j-api-1.6.4.jar -d .

MyDecodedFrameInterceptor.java

- jar cf frame-interceptor.jar com

- rm -rf com

2. Add your interceptor to flashphoner.properties
decoded_frame_interceptor =com.example.video.MyDecodedFrameInterceptor

Usage

Publish a stream and play it as WebRTC or WebSocket, e.g. using ‘Streaming Min’ or ‘WS

Player Min’ demo clients in Chrome or Firefox.

Example

Below is an example of class implementing

com.flashphoner.sdk.media.IDecodedFrameInterceptor. It draws green square

rectangle in the center of a frame.

package com.example.video;

import com.flashphoner.sdk.media.*;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class MyDecodedFrameInterceptor implements IDecodedFrameInterceptor {

 //create one global logger

 private static final Logger log =

LoggerFactory.getLogger("MyDecodedFrameInterceptor");

 public void frameDecoded(String streamName, YUVFrame frame) {

 log.info("Got frame " + frame);

 //draw 100x100 rectangle in the center

 int rectSide = 100;

 byte[] greenPixel = new byte[]{0x00, 0x00, 0x00};

 if (frame.getWidth() > rectSide && frame.getHeight() > rectSide) {

 int x = frame.getWidth()/2 - rectSide/2;

 int y = frame.getHeight()/2 - rectSide/2;

 int xLimit = x + rectSide;

 int yLimit = y + rectSide;

 log.info("Draw rect x:" + x + "-" + xLimit + " y:" + y + "-" + yLimit);

 for (; x < xLimit; x++) {

 for (int y2 = y; y2 < yLimit; y2++) {

 frame.writePixel(x, y2, greenPixel);

 }

 }

 }

 }

}

On the screenshot below RTSP stream is played as WebSocket in Chrome when decoded

frame interceptor is set to the MyDecodedFrameInterceptor.

